Metals News Hubb
Advertisement Banner
  • Home
  • News
  • Metallurgy
  • Contact
No Result
View All Result
  • Home
  • News
  • Metallurgy
  • Contact
No Result
View All Result
Gourmet News Hubb
No Result
View All Result
Home News

Material degradation inside Li-ion batteries finally understood

admin by admin
October 7, 2022
in News


In a lithium-ion battery, the lithium ions move to the anode during charging and move to the cathode during discharge. The KIST team succeeded in real-time observation of a silicon–graphite composite anode, which is being studied for its commercial use as a high-capacity battery. Theoretically, the charging capacity of silicon is 10 times higher than that of graphite, a conventional anode material. But the volume of silicon nanopowders quadruples during the charging process, making it difficult to ensure performance and safety.

It has been hypothesized that the nanopores formed during the mixing of the constituents of silicon–graphite composites can accommodate the volume expansion of silicon during battery charging, thereby changing the battery volume. However, the role of these nanopores has never been confirmed by direct observation with electrochemical voltage curves.

Using a self-designed battery analysis platform, the Korean researchers directly observed the migration of lithium ions into the silicon–graphite composite anode during charging and identified the practical role of the nanopores. It was found that lithium ions migrate sequentially into the carbon, nanopores, and silicon in the silicon–graphite composite.

Furthermore, they noted that the nano-sized pores tend to store lithium ions (fore-filling lithiation) before the lithium-silicon particles (Si lithiation), while the micro-sized pores accommodate the volume expansion of silicon as previously believed. Therefore, the research team suggests that a novel approach that appropriately distributes micro- and nano-sized pores to alleviate the volume expansion of silicon, thereby improving the safety of the material, is necessary for the design of high-capacity anode materials for lithium-ion batteries.

“Just as the James Webb Space Telescope heralds a new era in space exploration, the KIST battery analysis platform opens new horizons in material research by enabling the observation of structural changes in electric batteries,” Jae-Pyoung Ahn, head of KIST Research Resources Division, said in a media statement. “We plan to continue the additional research necessary for driving innovations in battery material design, by observing structural changes in battery materials that are not affected by atmospheric exposure.”





Source link

Previous Post

Will The Collapse Of Credit Suisse Be Europe’s “Lehman Brothers Moment”? – Silver Doctors

Next Post

AEC Praises ITC’s Renewal Of Antidumping And Countervailing Duties Against China’s Aluminium Extruders – Aluminium Insider

Next Post

AEC Praises ITC’s Renewal Of Antidumping And Countervailing Duties Against China’s Aluminium Extruders – Aluminium Insider

Recommended

Interview with David Morgan From The Perch

2 months ago

GM invests $650m in Lithium Americas to build mine

1 week ago

Gold and Silver Forecast for 2023

2 months ago

Rally Time – Silver Doctors

5 months ago

ASI Certifies All 14 Of Novelis’s Aluminium Recycling Centers In Brazil – Aluminium Insider

6 months ago

Hydro Begins New Bauxite Mining Front At Paragominas With BRL590 MM Capital Investment – Aluminium Insider

4 months ago

© 2022 Metals News Hubb All rights reserved.

Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Privacy Policy and Terms & Conditions.

Navigate Site

  • Home
  • News
  • Metallurgy
  • Contact

Newsletter Sign Up.

No Result
View All Result
  • Home
  • News
  • Metallurgy
  • Contact

© 2022 Metals News Hubb All rights reserved.